In mathematics , the Vitali–Hahn–Saks theorem , introduced by Vitali (1907 ), Hahn (1922 ), and Saks (1933 ), proves that under some conditions a sequence of measures converging point-wise does so uniformly and the limit is also a measure.
Statement of the theorem [ edit ]
If
(
S
,
B
,
m
)
{\displaystyle (S,{\mathcal {B}},m)}
is a measure space with
m
(
S
)
<
∞
,
{\displaystyle m(S)<\infty ,}
and a sequence
λ
n
{\displaystyle \lambda _{n}}
of complex measures . Assuming that each
λ
n
{\displaystyle \lambda _{n}}
is absolutely continuous with respect to
m
,
{\displaystyle m,}
and that a for all
B
∈
B
{\displaystyle B\in {\mathcal {B}}}
the finite limits exist
lim
n
→
∞
λ
n
(
B
)
=
λ
(
B
)
.
{\displaystyle \lim _{n\to \infty }\lambda _{n}(B)=\lambda (B).}
Then the absolute continuity of the
λ
n
{\displaystyle \lambda _{n}}
with respect to
m
{\displaystyle m}
is uniform in
n
,
{\displaystyle n,}
that is,
lim
B
m
(
B
)
=
0
{\displaystyle \lim _{B}m(B)=0}
implies that
lim
B
λ
n
(
B
)
=
0
{\displaystyle \lim _{B}\lambda _{n}(B)=0}
uniformly in
n
.
{\displaystyle n.}
Also
λ
{\displaystyle \lambda }
is countably additive on
B
.
{\displaystyle {\mathcal {B}}.}
Given a measure space
(
S
,
B
,
m
)
,
{\displaystyle (S,{\mathcal {B}},m),}
a distance can be constructed on
B
0
,
{\displaystyle {\mathcal {B}}_{0},}
the set of measurable sets
B
∈
B
{\displaystyle B\in {\mathcal {B}}}
with
m
(
B
)
<
∞
.
{\displaystyle m(B)<\infty .}
This is done by defining
d
(
B
1
,
B
2
)
=
m
(
B
1
Δ
B
2
)
,
{\displaystyle d(B_{1},B_{2})=m(B_{1}\Delta B_{2}),}
where
B
1
Δ
B
2
=
(
B
1
∖
B
2
)
∪
(
B
2
∖
B
1
)
{\displaystyle B_{1}\Delta B_{2}=(B_{1}\setminus B_{2})\cup (B_{2}\setminus B_{1})}
is the symmetric difference of the sets
B
1
,
B
2
∈
B
0
.
{\displaystyle B_{1},B_{2}\in {\mathcal {B}}_{0}.}
This gives rise to a metric space
B
0
~
{\displaystyle {\tilde {{\mathcal {B}}_{0}}}}
by identifying two sets
B
1
,
B
2
∈
B
0
{\displaystyle B_{1},B_{2}\in {\mathcal {B}}_{0}}
when
m
(
B
1
Δ
B
2
)
=
0.
{\displaystyle m(B_{1}\Delta B_{2})=0.}
Thus a point
B
¯
∈
B
0
~
{\displaystyle {\overline {B}}\in {\tilde {{\mathcal {B}}_{0}}}}
with representative
B
∈
B
0
{\displaystyle B\in {\mathcal {B}}_{0}}
is the set of all
B
1
∈
B
0
{\displaystyle B_{1}\in {\mathcal {B}}_{0}}
such that
m
(
B
Δ
B
1
)
=
0.
{\displaystyle m(B\Delta B_{1})=0.}
Proposition:
B
0
~
{\displaystyle {\tilde {{\mathcal {B}}_{0}}}}
with the metric defined above is a complete metric space .
Proof: Let
χ
B
(
x
)
=
{
1
,
x
∈
B
0
,
x
∉
B
{\displaystyle \chi _{B}(x)={\begin{cases}1,&x\in B\\0,&x\notin B\end{cases}}}
Then
d
(
B
1
,
B
2
)
=
∫
S
|
χ
B
1
(
s
)
−
χ
B
2
(
x
)
|
d
m
{\displaystyle d(B_{1},B_{2})=\int _{S}|\chi _{B_{1}}(s)-\chi _{B_{2}}(x)|dm}
This means that the metric space
B
0
~
{\displaystyle {\tilde {{\mathcal {B}}_{0}}}}
can be identified with a subset of the Banach space
L
1
(
S
,
B
,
m
)
{\displaystyle L^{1}(S,{\mathcal {B}},m)}
.
Let
B
n
∈
B
0
{\displaystyle B_{n}\in {\mathcal {B}}_{0}}
, with
lim
n
,
k
→
∞
d
(
B
n
,
B
k
)
=
lim
n
,
k
→
∞
∫
S
|
χ
B
n
(
x
)
−
χ
B
k
(
x
)
|
d
m
=
0
{\displaystyle \lim _{n,k\to \infty }d(B_{n},B_{k})=\lim _{n,k\to \infty }\int _{S}|\chi _{B_{n}}(x)-\chi _{B_{k}}(x)|dm=0}
Then we can choose a sub-sequence
χ
B
n
′
{\displaystyle \chi _{B_{n'}}}
such that
lim
n
′
→
∞
χ
B
n
′
(
x
)
=
χ
(
x
)
{\displaystyle \lim _{n'\to \infty }\chi _{B_{n'}}(x)=\chi (x)}
exists almost everywhere and
lim
n
′
→
∞
∫
S
|
χ
(
x
)
−
χ
B
n
′
(
x
)
|
d
m
=
0
{\displaystyle \lim _{n'\to \infty }\int _{S}|\chi (x)-\chi _{B_{n'}(x)}|dm=0}
. It follows that
χ
=
χ
B
∞
{\displaystyle \chi =\chi _{B_{\infty }}}
for some
B
∞
∈
B
0
{\displaystyle B_{\infty }\in {\mathcal {B}}_{0}}
(furthermore
χ
(
x
)
=
1
{\displaystyle \chi (x)=1}
if and only if
χ
B
n
′
(
x
)
=
1
{\displaystyle \chi _{B_{n'}}(x)=1}
for
n
′
{\displaystyle n'}
large enough, then we have that
B
∞
=
lim inf
n
′
→
∞
B
n
′
=
⋃
n
′
=
1
∞
(
⋂
m
=
n
′
∞
B
m
)
{\displaystyle B_{\infty }=\liminf _{n'\to \infty }B_{n'}={\bigcup _{n'=1}^{\infty }}\left({\bigcap _{m=n'}^{\infty }}B_{m}\right)}
the limit inferior of the sequence) and hence
lim
n
→
∞
d
(
B
∞
,
B
n
)
=
0.
{\displaystyle \lim _{n\to \infty }d(B_{\infty },B_{n})=0.}
Therefore,
B
0
~
{\displaystyle {\tilde {{\mathcal {B}}_{0}}}}
is complete.
Proof of Vitali-Hahn-Saks theorem [ edit ]
Each
λ
n
{\displaystyle \lambda _{n}}
defines a function
λ
¯
n
(
B
¯
)
{\displaystyle {\overline {\lambda }}_{n}({\overline {B}})}
on
B
~
{\displaystyle {\tilde {\mathcal {B}}}}
by taking
λ
¯
n
(
B
¯
)
=
λ
n
(
B
)
{\displaystyle {\overline {\lambda }}_{n}({\overline {B}})=\lambda _{n}(B)}
. This function is well defined, this is it is independent on the representative
B
{\displaystyle B}
of the class
B
¯
{\displaystyle {\overline {B}}}
due to the absolute continuity of
λ
n
{\displaystyle \lambda _{n}}
with respect to
m
{\displaystyle m}
. Moreover
λ
¯
n
{\displaystyle {\overline {\lambda }}_{n}}
is continuous.
For every
ϵ
>
0
{\displaystyle \epsilon >0}
the set
F
k
,
ϵ
=
{
B
¯
∈
B
~
:
sup
n
≥
1
|
λ
¯
k
(
B
¯
)
−
λ
¯
k
+
n
(
B
¯
)
|
≤
ϵ
}
{\displaystyle F_{k,\epsilon }=\{{\overline {B}}\in {\tilde {\mathcal {B}}}:\ \sup _{n\geq 1}|{\overline {\lambda }}_{k}({\overline {B}})-{\overline {\lambda }}_{k+n}({\overline {B}})|\leq \epsilon \}}
is closed in
B
~
{\displaystyle {\tilde {\mathcal {B}}}}
, and by the hypothesis
lim
n
→
∞
λ
n
(
B
)
=
λ
(
B
)
{\displaystyle \lim _{n\to \infty }\lambda _{n}(B)=\lambda (B)}
we have that
B
~
=
⋃
k
=
1
∞
F
k
,
ϵ
{\displaystyle {\tilde {\mathcal {B}}}=\bigcup _{k=1}^{\infty }F_{k,\epsilon }}
By Baire category theorem at least one
F
k
0
,
ϵ
{\displaystyle F_{k_{0},\epsilon }}
must contain a non-empty open set of
B
~
{\displaystyle {\tilde {\mathcal {B}}}}
. This means that there is
B
0
¯
∈
B
~
{\displaystyle {\overline {B_{0}}}\in {\tilde {\mathcal {B}}}}
and a
δ
>
0
{\displaystyle \delta >0}
such that
d
(
B
,
B
0
)
<
δ
{\displaystyle d(B,B_{0})<\delta }
implies
sup
n
≥
1
|
λ
¯
k
0
(
B
¯
)
−
λ
¯
k
0
+
n
(
B
¯
)
|
≤
ϵ
{\displaystyle \sup _{n\geq 1}|{\overline {\lambda }}_{k_{0}}({\overline {B}})-{\overline {\lambda }}_{k_{0}+n}({\overline {B}})|\leq \epsilon }
On the other hand, any
B
∈
B
{\displaystyle B\in {\mathcal {B}}}
with
m
(
B
)
≤
δ
{\displaystyle m(B)\leq \delta }
can be represented as
B
=
B
1
∖
B
2
{\displaystyle B=B_{1}\setminus B_{2}}
with
d
(
B
1
,
B
0
)
≤
δ
{\displaystyle d(B_{1},B_{0})\leq \delta }
and
d
(
B
2
,
B
0
)
≤
δ
{\displaystyle d(B_{2},B_{0})\leq \delta }
. This can be done, for example by taking
B
1
=
B
∪
B
0
{\displaystyle B_{1}=B\cup B_{0}}
and
B
2
=
B
0
∖
(
B
∩
B
0
)
{\displaystyle B_{2}=B_{0}\setminus (B\cap B_{0})}
. Thus, if
m
(
B
)
≤
δ
{\displaystyle m(B)\leq \delta }
and
k
≥
k
0
{\displaystyle k\geq k_{0}}
then
|
λ
k
(
B
)
|
≤
|
λ
k
0
(
B
)
|
+
|
λ
k
0
(
B
)
−
λ
k
(
B
)
|
≤
|
λ
k
0
(
B
)
|
+
|
λ
k
0
(
B
1
)
−
λ
k
(
B
1
)
|
+
|
λ
k
0
(
B
2
)
−
λ
k
(
B
2
)
|
≤
|
λ
k
0
(
B
)
|
+
2
ϵ
{\displaystyle {\begin{aligned}|\lambda _{k}(B)|&\leq |\lambda _{k_{0}}(B)|+|\lambda _{k_{0}}(B)-\lambda _{k}(B)|\\&\leq |\lambda _{k_{0}}(B)|+|\lambda _{k_{0}}(B_{1})-\lambda _{k}(B_{1})|+|\lambda _{k_{0}}(B_{2})-\lambda _{k}(B_{2})|\\&\leq |\lambda _{k_{0}}(B)|+2\epsilon \end{aligned}}}
Therefore, by the absolute continuity of
λ
k
0
{\displaystyle \lambda _{k_{0}}}
with respect to
m
{\displaystyle m}
, and since
ϵ
{\displaystyle \epsilon }
is arbitrary, we get that
m
(
B
)
→
0
{\displaystyle m(B)\to 0}
implies
λ
n
(
B
)
→
0
{\displaystyle \lambda _{n}(B)\to 0}
uniformly in
n
.
{\displaystyle n.}
In particular,
m
(
B
)
→
0
{\displaystyle m(B)\to 0}
implies
λ
(
B
)
→
0.
{\displaystyle \lambda (B)\to 0.}
By the additivity of the limit it follows that
λ
{\displaystyle \lambda }
is finitely-additive . Then, since
lim
m
(
B
)
→
0
λ
(
B
)
=
0
{\displaystyle \lim _{m(B)\to 0}\lambda (B)=0}
it follows that
λ
{\displaystyle \lambda }
is actually countably additive.
Hahn, H. (1922), "Über Folgen linearer Operationen" , Monatsh. Math. (in German), 32 : 3–88, doi :10.1007/bf01696876
Saks, Stanislaw (1933), "Addition to the Note on Some Functionals", Transactions of the American Mathematical Society , 35 (4): 965–970, doi :10.2307/1989603 , JSTOR 1989603
Vitali, G. (1907), "Sull' integrazione per serie" , Rendiconti del Circolo Matematico di Palermo (in Italian), 23 : 137–155, doi :10.1007/BF03013514
Yosida, K. (1971), Functional Analysis , Springer, pp. 70–71, ISBN 0-387-05506-1